

GeneXus Overview
Latest Update: 2012

Overview of GeneXus

Page 1

Copyright Artech Consultores S. R. L. 1988-2012.

All rights reserved. Reproduction by any means is prohibited without the express authorization of Artech

Consultores S.R.L. The information contained in this document is for personal use only.

Trade Marks

Artech and GeneXus are brands or trade marks of Artech Consultores S.R.L. All other brands mentioned in this

document are the property of their respective owners.

Overview of GeneXus

Page 2

Introduction .. 3

The Theoretical Question ... 4

Traditional Development Methodologies and Associated Problems 4

Knowledge-based Development and Incremental Methodology 5

GeneXus: Incremental Development Made True ... 7

Design ... 9

Knowledge-based Development .. 12

Multiple Platforms / Multi Tier Architecture ... 12

Prototyping ... 13

Implementation ... 14

Maintenance ... 15

Impact of Changes on the Database .. 16

Impact of Changes on Programs ... 16

Documentation .. 16

Consolidation of Several Applications and Re-utilization of Knowledge 17

Unique Features of GENEXUS... 18

Who Are the Users of GENEXUS? .. 19

Overview of GeneXus

Page 3

Introduction

GeneXus is an intelligent tool developed by Artech aimed at assisting analysts and users

throughout the lifecycle of applications.

The design and prototype are done and tested on a Windows NT/2000/XP/7 environment.

Once the prototype is fully approved by users, the database and the application programs

for the production environment are generated and/or maintained in a fully automatic way.

The core idea underlying GeneXus is the automation of everything that may be automated:

data and design normalization, the generation and maintenance of the database and the

application programs. This prevents analysts from spending time in routine and tedious

tasks, leaving them free to fully concentrate on the one thing programs will never be able to

do: understand the issues faced by the user.

As a byproduct, GeneXus offers rigorous, self-sufficient and constantly updated

documentation.

The aim of this document is to provide readers with information on GeneXus and the

problems that it solves.

Contents of the sections below:

 The theoretical question: this chapter presents a description comparing traditional

system development methods and incremental development.

 An incremental development implementation: GeneXus.

 Unique features of GeneXus.

 Who the users of GeneXus?

Overview of GeneXus

Page 4

The Theoretical Question

Traditional Development Methodologies and Associated
Problems

The traditional method for developing applications is based on a core principle: it is

possible to build a stable data model of the business. Based on this principle, the first

task performed is the analysis of data, where reality is studied in an abstract way to obtain

a product data model of the business. The second task is the design of the database. It is

very simple to design a database starting from a known data model.

 Once reality has been studied from the point of view of data, the same is done from the

point of view of functions (functional analysis). It would be desirable that the study of

reality resulted in a functional specification that depended solely on this reality. However, in

the most used methodologies, a functional specification referred to the database files (or to

the data model entities, which is essentially equivalent) is obtained.

Once the database and the functional specification have been obtained, the next step is the

implementation of functions, for which there are traditionally several options (3rd or 4th

generation languages, generators, and interpreters).

However, all these forms of implementation have a common problem: they are based on

the principle stated above: it is possible to build a stable data model of the business,

and this principle is false.

It is actually impossible to build, in an abstract way, a fully detailed and objective data

model of the business, because nobody knows the business as a whole.

For this reason it is necessary to resort to multiple interlocutors, with each one of them

projecting their own subjectivity on the model. A consequence of this is that during the

lifecycle of the application, the model undergoes changes.

But even in an ideal situation, where all needs are fully accounted for, and where it would

be therefore be possible to define an optimum database, the model would have to change to

encompass the evolution of the business.

Overview of GeneXus

Page 5

All this would be of little importance if the functional specification and the database were

independent. However, since the functional specification refers to the database, the

inevitable modifications in the latter determine the need for (manual) modifications in the

former.

The most important consequence of this is that maintenance costs are extremely high: most

companies working with the conventional methods agree that 80% of the resources

theoretically allocated to development are actually used to maintain already implemented

applications.

In the case of large applications the situation is even worse: maintenance starts much

before implementation, which creates a hyperlineal increase of development costs against

the size of the project.

Due to the difficulties in determining and propagating the consequences of changes made to

the database to the processes in this context, instead of making the necessary changes, the

option is frequently to introduce redundant files, with the consequent degrading of system

quality and the increase of maintenance costs.

Knowledge-based Development and Incremental
Methodology

In the last few years there has been a lot of talk about Knowledge Management in the

industry and many things have been included under this label, which are very different from

Knowledge-based Development as we describe it here.

The industry has usually used the term to refer to ways of organizing and/or accessing

knowledge to be used in a traditional way by human beings. This is an updated version,

using currently available technology, of books (and one that is enormously useful for

humanity): by reading a book we access certain knowledge and, in our minds, we reason on

this knowledge, which ultimately results in actions. Intelligent text searchers, which have

become available in the last few years, make this knowledge increasingly accessible to more

human beings.

As a general rule, this knowledge is not “understandable” for a machine and is, therefore,

not operable. Additionally, as human beings are able to reasonably (up to a certain extent)

deal with ambiguity and even with inconsistency, this knowledge is not always rigorous.

Overview of GeneXus

Page 6

It is then important to define the concept of knowledge that we will use in our Knowledge-

based Development. This knowledge meets the following conditions:

 It is rigorous

 It may be represented objectively

 It is operable

Finding a new way to solve the problem of system development requires replacing the basic

principle stated above: assuming that it is not possible to build a stable data model of

the business and, using instead an incremental philosophy and creating a

Knowledge-based Development. An incremental approach seems natural: not dealing

with large issues, but rather solving small problems as they appear.

What is the impact of this type of scheme on maintenance costs?

If the previously described methodologies were to be used with this approach, the impact on

cost would be very high: the data model would be constantly modified and maintenance

costs would be even higher than the ones described above.

The following is clear though: the database is not known, but each user, knows very well

the data views they use everyday.

These data views may be of various types: screens, dialogs, process flows, lists, etc., which

form the external appearance of the application: what is tangible for the user.

How can the knowledge of these views help in creating a data model?

Can the issue be turned into a logical/mathematical problem? If this were possible, logic and

mathematics would provide a wide range of resources to help solve it automatically and, as

a consequence, the analyst’s job would be highly simplified. It is interesting to point out the

following: if the database were known, it should be possible to derive from it the data views

of the different users. That is to say, the database must fulfill all the views known. It may

be demonstrated that, given a set of user data views, there is always a minimum database

that fulfills it, which is also unique. At this stage, the problem has become a

logical/mathematical problem and it is then necessary to solve it in order to find that

database.

Overview of GeneXus

Page 7

How Is This Theory Implemented?

The knowledge existing in the user views is captured and systematized in a knowledge base

(all this is done automatically). The main characteristic of this knowledge base, which

distinguishes it from the traditional data dictionaries, is its inference capacity: it is expected

that, at any moment, it may be possible to retrieve from this knowledge base both the

elements that have been placed in it and any other that may be inferred from them.

If this objective is met, the database and the application programs become deterministic

transformations of this database and this permits to:

 Generate them automatically

 Determine the impact of changes made to the data and processes on the user

data views and to propagate such changes generating:

o the programs needed to convert data;

o the application programs affected by the changes;

o those application programs that have not been affected by the changes,

but that may now be replaced by more efficient ones.

GeneXus: Incremental Development

Made True

GeneXus applies this theory.

GeneXus is a tool based on the “user views”; it captures their knowledge and systematizes

them in a knowledge base. From its knowledge base, GeneXus is capable of designing,

generating and maintaining in a fully automatic way the structure of the database and the

application programs (the programs required for the users to be able to operate with their

views).

GeneXus is built on solid mathematical principles.

Overview of GeneXus

Page 8

This is the main strength of GeneXus: an excellent management of the knowledge of

business systems.

GeneXus works with pure knowledge, which permits to do several things: to generate

programs (traditional software), understand the knowledge of human beings (it does not

need additional knowledge –which would never be updated), and to automatically operate

that knowledge (by integrating it to other knowledge coming from other sources, spreading

it, granting licenses to third parties to incorporate it to their applications). In short, GeneXus

enables the “business of knowledge”, as a step forward in relation to the “business of

software”.

Another advantage of working with pure knowledge is the possibility of generating

applications for multiple platforms and multiple architectures and, in particular, being able

to have some kind of “insurance” for technological changes: for example, the users of

GeneXus that developed applications 8 or 10 years ago for AS/400 with text screens and

quite primitive technologies, can now take advantage of the knowledge on the development

of these applications that GeneXus saved to develop Java and/or .NET applications easily,

although when these applications were developed, nobody could think of anything as

different from the environment on which they worked.

When an application is developed with GeneXus the first stage is the Design that is done by

recording the views of users (based on which the system captures and systematizes

knowledge).

Next comes the Prototype stage in which GeneXus generates the database (structure and

data) and the programs for the prototype environment. Once the Prototype has been

generated it must be tested by the analyst and the users.

If improvements and errors are detected during the Prototype test, we return to the Design

phase, the required changes are made and then we go back to the Prototype. We call this

cycle the Design/Prototype cycle.

Once the Prototype has been approved, we go to the Implementation phase, where

GeneXus generates, also automatically, the database and the programs for the production

environment.

Overview of GeneXus

Page 9

In short, an application starts with a Design, then a Prototype, it is then Implemented or put

in the production stage and at any of the previous stages it may be sent back to Design to

make changes.

Design

Prototype

Production

Figure 1 - Design-Prototype and Design-Production Cycles

These tasks are described below.

Design

This task is performed jointly by the analyst and the user and it consists in identifying and

describing the data views of users.

The work is done in the user’s environment. This method permits to work with a low level of

abstraction, using terms and concepts that are familiar to the final user.

Overview of GeneXus

Page 10

A very important consequence of this is that the user’s attitude is highly participatory. The

system becomes a joint work and as the user follows its evolution constantly, quality is

much better than usual.

As we have already mentioned, GeneXus captures knowledge using views of objects from

the user’s reality. The types of objects supported by GeneXus are, among others:

Transactions, Reports, Procedures, Work Panels, Web Panels, Data Views, and BI

Transactions.

The design task consists mainly in identifying and describing these objects. Using these

descriptions and in automatic way, GeneXus systematizes the knowledge captured and

starts to build, in an incremental way, the Knowledge Base.

This Knowledge Base is a single repository of all the design information, using which

GeneXus creates the physical data model (tables, attributes, tables of contents,

redundancies, referential integrity rules, etc.), and the application programs.

Therefore, the main task in the analysis and design of an application is centered on the

description of GeneXus objects.

The following are the most important types of GeneXus objects:

Transactions

A transaction is an interactive process or a screen (Win or Web) that permits users to

create, modify, or eliminate information from the database.

Examples:

 A screen to create, modify or delete Company Customers.

 A billing screen: a process that enables a user to create bills and print them.

A screen enables the user to perform different actions such as inserting, updating, deleting,

printing without the need to return to the main menu.

The transaction has essential elements such as the screen data structure, the rules of the

business, and formulas and cosmetic elements such as the format of screens (in this case

Overview of GeneXus

Page 11

the developer may use the editors available to format it or choose to use the one

automatically inferred by the system).

Reports

A report is a process that permits to view data from the database. The list output may be

sent to a screen or to a printer (and in this case we have a conventional list).

This object may be used to define simple lists (for example, a list of customers) or highly

sophisticated lists, with several control cuts, multiple readings from the database and

parameterization.

A report may not update the database.

It also has a GXquery tool to perform dynamic reports on the database. For more

information see: www.genexus.com/gxquery

Procedures

This object has all the features of Reports and also permits to update the database.

Procedures are commonly used for two types of processes:

 Batch updating processes. For example: deleting all bills paid prior to a certain date

 General use subroutines. For example: a written amount routine where, given an

amount a literal is retrieved with the amount in words (1010 => 'A thousand and

ten')

 Processes to be run on an application server or database server: processes (in

general written on Java or.NET) for Multi Tier Architecture, to be run on an

application or database server.

Work Panels

A Work Panel is a screen that enables the user to perform interactive database queries. The

more users use their computers for their work, the higher the need for using sophisticated

dialogs that permit them to sit in front of the computer and think. Work Panels enable the

design of this type of user dialogs.

For example: A Work Panel that shows the list of customers and permits the user to choose

to view customers’ bills or pending accounts.

Web Panels

These are similar to the Work Panels group but require the use of an application navigator

(Browser) to be run on Internet/Intranet/Extranet environments.

http://www.genexus.com/gxquery

Overview of GeneXus

Page 12

Data Views

These permit to establish correspondences between preexisting database tables and

GeneXus tables and to operate them with the same intelligence as GeneXus objects.

Knowledge-based Development

Using the objects described above, the physical data model is designed based on the

Relational Database Theory and ensuring a normal third form database (without

redundancy). This normalization is carried out automatically by GeneXus.

However, the analyst may define redundancies, which are then automatically managed

(controlled or propagated, as applicable), by GeneXus.

GeneXus’ repository maintains the design specifications in an abstract way; that is, it does

not depend on the target environment, which allows generating equivalent functional

applications from the same repository to be run on different platforms.

Multiple Platforms / Multi Tier Architecture

As a consequence of the above, it is possible, for example, for a user of a centralized IBM

AS/400 application, 100% developed with GeneXus, maybe 15 years ago, to operate it fully

or in part on a JAVA or .NET environment without the need to modify the original objects.

In the last few years, generating multi-platform applications has become necessity, that is,

executing the same application on several environments. For example, a banking system

application must be capable of running on an iSeries or Linux server in the central office

and on a PC net in the bank branches.

But that is not all; with the increasing use of Client/Server and Internet/Intranet/Extranet

environments, a new need has emerged: the same application must have one of its parts

running on a certain platform and others running on other platforms. In these cases, it is

also essential to have a correct intercommunication among the different parts of the

platform.

Developing applications on GeneXus also provides the possibility of dividing an application

in such a way that each part may be executed on a different platform, using the most

appropriate language to generate programs on each one of these platforms. This has lead

to the development of multiple tier architectures, which also optimize the use of the

resources available, and new technologies.

Overview of GeneXus

Page 13

Prototyping

Design tasks carry the difficulties of all human communication:

 The user fails to remember certain details.

 The analyst fails to record certain elements.

 The user makes some wrong assessments.

 The analyst misinterprets some of the user explanations.

But the implementation of systems is also generally a time consuming task, therefore:

 Because many of these problems are detected only at the final testing stage of the

system, the cost of solving them (both in time and money) is very high.

 Reality is always changing; therefore, it is not reasonable to think that

specifications may be frozen when the system is implemented.

 The consequence of freezing specifications is that the finally implemented solution

is relatively unsatisfactory.

The impact of these problems would be greatly diminished if it were possible to test each

specification immediately, and to know the repercussion of each change on the rest of the

system.

A first approach to this, offered by several systems, is the possibility of showing the user

screen formats, reports, etc., animated by menus. This helps the user have an idea of the

system being built, but it always has surprises later.

An entirely different situation would be to make available to the user for execution an

application functionally equivalent to the desired one, up to the smallest detail.

This is what GeneXus does: A GeneXus prototype is a complete application,

functionally equivalent to the production application.

The difference between prototyping and production is that the former is performed on a

microcomputer environment, while production is performed on the target environment of

the user (IBM iSeries, Linux server, Client / Server, JAVA, .NET, iOS, Android, BlackBerry,

etc.). The prototype permits to fully test the application before production. During these

tests, the final user may work with real data, testing in a natural way, not only the screen

formats, reports, etc., but also the formulas, business rules, data structures, etc.

Overview of GeneXus

Page 14

The philosophy of GeneXus is based on the concept known as incremental development.

When working on a traditional environment, the changes made to the project during

implementation, and in particular once the system is implemented, are very expensive (and

rarely well documented). GeneXus solves this problem: it builds the application using a

successive approach methodology that permits, once the need for changes has been

detected, the user to prototype them and test them immediately, without any additional

cost.

Implementation

GeneXus automatically generates the code required to:

 Create and maintain the database;

 Generate and maintain the programs to manage the objects described by the user.

The generation process can be divided in two stages: SPECIFICATION and GENERATION.

Specification is fully independent form the target environment, but generation is not. This

means that it is possible to execute the same model on the different execution platforms for

which it has been generated, and each one of the versions generated may be optimized for

the environment on which it will be run.

The most important environments and languages supported to the date of this document

(see cover) are:

Platforms

Execution platforms

JAVA, Microsoft .NET, Microsoft .NET Compact Framework

Operative Systems

IBM OS/400, LINUX, UNIX, Windows NT/2000/2003 Servers, Windows

NT/2000/XP/CE and Windows Vista

Internet

JAVA, ASP.NET, Visual Basic (ASP), C/SQL, HTML, Web Services

Mobile

 iOS, Android, BlackBerry

Overview of GeneXus

Page 15

Databases

IBM DB2 for iSeries and UDB, Informix, Microsoft SQL Server, MySQL, Oracle and

PostgreSQL

Languages

JAVA, C#, COBOL, RPG, Visual Basic

Web Servers

Microsoft IIS, Apache, WebSphere, etc.

Multiple Architectures

Multiple tier architectures, web-based, Client/Server, centralized (iSeries), mobile

For a complete list of the technologies currently supported go to:

http://www.genexus.com/technologies

GeneXus also offers a set of supplementary tools for:

 Workflow – GXflow (www.gxflow.com)

 Reporting – GXquery (www.gxquery.com)

 Business Intelligence – GXplorer (www.gxplorer.com)

 Portal Building – GXportal (www.gxportal.com)

 GeneXus Server (http://www.genexus.com/gxserver)

 Gxtest (http://www.genexus.com/gxtest)

Maintenance

One of the most important features of GeneXus, which clearly sets it apart from

competitors, is that the maintenance of both the database (structure and contents) and the

programs is fully automatic.

http://www.genexus.com/technologies
http://www.gxflow.com/
http://www.gxquery.com/
http://www.gxplorer.com/
http://www.gxportal.com/
http://www.genexus.com/productos/gxserver?es
http://www.genexus.com/gxtest

Overview of GeneXus

Page 16

The following is an explanation of the maintenance process when introducing changes to the

description of any GeneXus object (user view):

Impact of Changes on the Database

Impact Analysis

Once the user view changes have been described, GeneXus automatically analyzes their

impact on the database a produces a report explaining how to make the data conversion

and, if applicable, the potential problems of such conversion (inconsistencies due to old data

against new rules, etc.). The analyst decides whether to accept the impact and continue or

not.

Generation of Conversion Programs

Once the problems have been solved or the default conversion proposed by GeneXus has

been accepted, the programs used to perform the conversion (structure and content) from

the old database to the new one are automatically generated.

Execution of Conversion Programs

The next step is to go to the corresponding execution environment (prototype, Internet

production, Client / Server production, etc.) and execute the conversion programs.

Impact of Changes on Programs

Impact Analysis

GeneXus analyzes the impact of changes on programs and generates a diagnosis reporting

on the programs that must be generated or re-generated and also providing either the

navigation diagram or a pseudo-code for the new program, as chosen by the analyst

Generation of New Programs

The system subsequently generates or re-generates all the programs automatically.

Documentation

Overview of GeneXus

Page 17

All the knowledge supplied by the analyst, or inferred by GeneXus, is available from an

active repository that constitutes a very complete, constantly updated online

documentation.

The documentation includes the description of specific objects and information on the

resulting knowledge base and the database designed.

The knowledge base of GeneXus not only permits to access the knowledge stored anytime

the developer wants it, but also enables access to all the information logically inferred (a

referential integrity rule, a navigation map on the database, an analysis of the impact of

changes, cross references, E-R diagrams inferred from the knowledge stored, etc.).

Consolidation of Several Applications and Re-utilization of
Knowledge

Several applications may be designed and prototyped at the same time, by different teams,

using GeneXus. These teams may exchange design specifications using GeneXus Knowledge

Manager.

This module permits to perform the following tasks automatically:

 Start the design of a new application based on Business Objects, Software Patterns,

Domains, Attributes and/or Styles from a public domain (see:

http://www.gxopen.com.uy).

 Distribute knowledge from a corporate knowledge base to the knowledge base of

another application.

 Verify the concordance between the knowledge base of an application and the

corporate knowledge base.

 Consolidate two applications (this is especially useful to consolidate knowledge from

a given application to the corporate knowledge base).

This provides an ideal flexibility: the analyst works freely on a prototype environment, with

a small knowledge base and, only when the application is ready from the point of view of

the user, the corporate knowledge base, which is generally very large, needs to be taken

into account.

http://www.gxpublic.com/
http://www.gxpublic.com/

Overview of GeneXus

Page 18

At this point, with powerful automatic aids, the impact of the new application is determined,

or the modification of the preexisting one and, if applicable, the changes needed to ensure

consistency are performed in a very simple way.

With this scheme it is possible to re-use, for example, licensed Knowledge Bases from third

parties.

At the beginning, it is necessary to use a common nomenclature for the different knowledge

bases involved in the consolidation. However, the “Adapt From” functionality permits to

define a mapping for the conversion of names to adapt to the target nomenclature.

It is also important to point out that the software house granting the license on the

GeneXus knowledge base may maintain the confidentiality of some of its parts, thus

permitting its automatic use without disclosing its sources.

Additionally, it is possible for an object to be labeled as public or private. All may be used

automatically by GeneXus, but in the case of private objects, only the owner may see

and/or modify the high level source of GeneXus.

It is important to highlight that GeneXus has a feature that permits to generate applications

in several languages on the same knowledge base, which helps greatly in the international

use of applications.

Unique Features of GENEXUS

GeneXus has some unique features that set it apart from competitors. Among others:

 The design is based on the views supplied by users. Because of their daily

activities, they are the ones who know how things should and should not work.

 The description of each object is fully independent, so that, in case of needing to

modify the description of one, this will not imply the need to manually modify the

Overview of GeneXus

Page 19

description of any other. This exclusive feature of GeneXus (ortogonality of

descriptions) is the one that permits a fully automatic maintenance of applications.

 The learning curve is short.

 Fully automatic design, creation and maintenance of databases.

 The application (databases and programs) is always high quality, regardless of the

modifications it undergoes:

o The database is always optimum (third normal form).

o No programs are modified: when programs are no longer adequate, new

optimum ones, not amended, are generated to replace them.

 Use of preexisting files or databases as GeneXus own.

 Powerful, very high level languages for the definition of Processes, Work Panels and

Web Objects. The descriptions of processes in these languages are performed

without referring to the files involved, which are automatically inferred at generation

time. This feature enables full independence of data from such specifications.

Consequently, GeneXus high level specifications do not need to be modified when

modifying the database.

 100% automatic maintenance: All of these elements permit GeneXus to

automatically generate and maintain a 100% of the programs on business

applications (commercial, administrative, financial, industrial, etc.).

 GeneXus works on PCs, leaving the production environment totally free for the

processing of applications.

 Easy distribution of corporate knowledge to facilitate the development of new

applications.

 Simple and powerful Reporting and Data Warehousing solutions.

 Automatic consistency checks and consolidation across applications developed

separately.

 Platform and architecture independence.

 Simplicity: GeneXus uses the most advanced artificial intelligence resources for the

analyst and the users to use in a very simple way.

Who Are the Users of GENEXUS?

Over 5,000 customers, with over 40,000 licenses throughout the world, use GeneXus to

create and integrate mission critical applications that adapt easily to the inevitable changes

of the business. The technology of GeneXus permits customers to use its exclusive business

know-how on the leading technological platforms of the market.

Corporate customers include medium-sized to very large companies in a wide range of

industries. They currently account for 65% of the billing of GeneXus.

Overview of GeneXus

Page 20

Software houses include small, medium-sized and large software companies that build their

solutions using GeneXus technology. This segment currently accounts for 35% of billing,

and is rapidly growing.

